New Number: 2.59 | AESZ: 47 | Superseeker: -384 -164736 | Hash: 792da990d2d2e5263bb789ad37b00d44
Degree: 2
\(\theta^4-2^{4} 3 x(2\theta+1)^2(18\theta^2+18\theta+13)+2^{10} 3^{6} x^{2}(2\theta+1)(\theta+1)^2(2\theta+3)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 624, 685584, 883925760, 1229988226320, ... --> OEIS Normalized instanton numbers (n0=1): -384, -1356, -164736, 96211836, -3267254400, ... ; Common denominator:...
Discriminant
\((1728z-1)^2\)
Local exponents
Note:
Hadamard product $I \ast \kappa$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -384, -11232, -4448256, 6157546272, -408406800384, 285989083527168, -120015715902160896,...
Coefficients of the q-coordinate : 0, 1, -864, 529632, -272074752, 126845233200, -55579615921152, 23323579295205888,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(\frac{ 7}{ 6}+108\lambda\) | \(\frac{ 1}{ 4}-54\lambda\) | \(-\frac{ 1}{ 18}-36\lambda\) | \(-\frac{ 1}{ 27}(-8I\lambdaPi^3)^{ \frac{ 3}{ 2}}Zeta(5)^(\frac{ 2}{ 3})\) |
\(\frac{ 4}{ 3}\) | \(\frac{ 1}{ 3}\) | \(-\frac{ 4}{ 9}\) | \(-\frac{ 1}{ 18}+36\lambda\) |
\(2\) | \(3\) | \(\frac{ 1}{ 3}\) | \(\frac{ 1}{ 4}+54\lambda\) |
\(-4\) | \(2\) | \(\frac{ 4}{ 3}\) | \(\frac{ 7}{ 6}-108\lambda\) |
copy data Basis of the Doran-Morgan lattice
\(-\frac{ 1}{ 6}-108\lambda\) | \(-\frac{ 1}{ 3}\) | \(\frac{ 3}{ 2}\) | \(1\) |
\(-\frac{ 4}{ 3}\) | \(4\) | \(-1\) | \(0\) |
\(-2\) | \(-4\) | \(0\) | \(0\) |
\(4\) | \(0\) | \(0\) | \(0\) |
copy data