New Number: 2.51 | AESZ: ~88,~89 | Superseeker: -5472 -6444589536 | Hash: 02d09c6c320ab036e45834cf0d3951e7
Degree: 2
\(\theta^4-2^{4} 3 x\left(1152\theta^4+2304\theta^3+2704\theta^2+1552\theta+339\right)+2^{16} 3^{2} x^{2}(6\theta+5)^2(6\theta+7)^2\)
Maple LaTex Coefficients of the holomorphic solution: 1, 16272, 347859216, 8115450239232, 197661638029770000, ... --> OEIS Normalized instanton numbers (n0=1): -5472, -4476528, -6444589536, -12228845295024, -27012506850929952, ... ; Common denominator:...
Discriminant
\((27648z-1)^2\)
Local exponents
Note:
Operator equivalent to $\widehat{14}$
B-Incarnations:
Double octics: D.O.267, D.O.275
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -5472, -35817696, -174003922944, -782646134699232, -3376563356366249472, -14206154558329645074432, -58775273318872131322576896,...
Coefficients of the q-coordinate : 0, 1, -9408, 38014560, -95305603072, 175967420118576, -262791111112390656, 332714240865107067392,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(\frac{ 7}{ 6}\) | \(I(-\frac{ 7}{ 8}-\frac{ 1}{ 8}ln(2)^(\frac{ 1}{ 2})-\frac{ 1}{ 4}/ln(2)^(\frac{ 1}{ 2}))\) | \(-\frac{ 13}{ 72}\) | \(0\) |
\(0\) | \(-\frac{ 7}{ 6}\) | \(0\) | \(-\frac{ 13}{ 72}\) |
\(2\) | \(0\) | \(-\frac{ 7}{ 6}\) | \(I(\frac{ 7}{ 8}+\frac{ 1}{ 8}ln(2)^(\frac{ 1}{ 2})+\frac{ 1}{ 4}/ln(2)^(\frac{ 1}{ 2}))\) |
\(0\) | \(2\) | \(0\) | \(\frac{ 7}{ 6}\) |
copy data Basis of the Doran-Morgan lattice
\(cy[DM_basis]\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
copy data