New Number: 2.45 | AESZ: ~82 | Superseeker: -10080 -24400330080 | Hash: 11afa89027677e0616228cad62a9f990
Degree: 2
\(\theta^4-2^{2} 3^{2} x\left(2592\theta^4+5184\theta^3+6066\theta^2+3474\theta+755\right)+2^{4} 3^{10} x^{2}(4\theta+3)(4\theta+5)(12\theta+11)(12\theta+13)\)
Maple LaTex Coefficients of the holomorphic solution: 1, 27180, 978471900, 38487760088400, 1581137831289447900, ... --> OEIS Normalized instanton numbers (n0=1): -10080, -11338740, -24400330080, -69157402598340, -228492096441648480, ... ; Common denominator:...
Discriminant
\((46656z-1)^2\)
Local exponents
Note:
Operator equivalent to $\hat{8}$
Integral instantons: ,...
Coefficients of the Yukawa coupling: 1, -10080, -90720000, -658808922240, -4426073857013760, -28561512055206070080, -179848784459083038888960, -1114039667396807256815781120,...
Coefficients of the q-coordinate : 0, 1, -16344, 123097644, -614114232384, 2383466617921230, -7821147556235151648, 22735736283182442819768,...
| Gopakumar-Vafa invariants |
---|
g=0 | ,... |
g=1 | ,... |
g=2 | ,... |
No topological data
Monodromy (with respect to Frobenius basis)
\(1\) | \(-1\) | \(\frac{ 1}{ 2}\) | \(-\frac{ 1}{ 6}\) |
\(0\) | \(1\) | \(-1\) | \(\frac{ 1}{ 2}\) |
\(0\) | \(0\) | \(1\) | \(-1\) |
\(0\) | \(0\) | \(0\) | \(1\) |
copy data \(\frac{ 5}{ 8}\sqrt{ 3}\) | \(-1.175097994I\) | \(-.99232078e-1\) | \(0\) |
\(0\) | \(-1.082531755\) | \(0\) | \(-.99232078e-1\) |
\(\sqrt{ 3}\) | \(0\) | \(-1.082531755\) | \(1.175097994I\) |
\(0\) | \(\sqrt{ 3}\) | \(0\) | \(\frac{ 5}{ 8}\sqrt{ 3}\) |
copy data Basis of the Doran-Morgan lattice
\(cy[DM_basis]\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
\(\) | \(\) | \(\) | \(\) |
copy data